
Appendix: Final form of the algebraic mass 
ux model

The pertinent facts concerning the computational implementation of the mass 
ux rep-

resentation are presented here. The general form of the model, valid for a three-dimensional


ow in an inertial system without body forces, is

< vi >= � [�0�ij + �1�Vi;j +�2�
2Vi;k Vk;j ]fvjvpg < � >;p< � >�1

where the viscosity coe�cients are functions of the invariants of, A = 1 + �rV, and are

given by �0 = (1 � IA + IIA)=IIIA, �1 = (2 � IA)=IIIA, and �2 = 1=IIIA. The invariants

for the tensor are given by

IA = < A >

IIA = 1=2(< A >2 � < A2 >)
IIIA = 1=6(< A >3 �3 < A >< A2 > +2 < A3 >)

for which <> indicates the trace of the enclosed matrix. The time scale is de�ned as

� = (Mtk=")=(1 +Mt(P=" � 1)) The various traces are straightforward to compute using

their de�nition. Their signi�cance can be understood when they are recast in terms of the

mean dilatation, rotation and strain:

< A >= 3 + �D

< A2 >= 3 + 2�D + � 2[< S2 > + < W 2 >]
< A3 >= 3 + 3�D + 3� 2[< S2 > + < W 2 >] + � 3[< S3 > +2 < SW 2 > + < W 3 >]

D = Sjj is the mean dilatation and the strain and rotation tensors are de�ned: Sij =

1=2[Vi;j +Vj ;i ] and Wij = 1=2[Vi;j �Vj;i ]. The term �D can be thought of as a ratio of


uctuating to mean dilatation time scales. It is understood to be order one or smaller,

�D < 1.
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turbulence �elds in which the production terms play a major role. For 
ows in which the

pressure dilatation covariance plays a major role in transferring energy from its kinetic to

potential modes it may be necessary to reevaluate the adequacy of the linear relaxation

model.

The form of the mass 
ux model presented does not include e�ects associated with

rotation or body forces. Both of these e�ects can be easily incorporated as they do not

require any additional modeling; it is simply a matter of retaining the extra terms in the

algebraic truncation of the evolution equations. There is an exception; at rapid rotation rates

the neglected pressure covariance becomes important and the truncation of the evolution

equation used to obtain the model is no longer valid.

The model is realizable for most simple 
ows though a general proof of its realizability

has not been found. These realizability aspects, and the fact that the destabilizing properties

associated with isotropic eddy-viscosity models do not appear in this mass 
ux model, are

expected to make it computationally robust.

In the moment evolution equations for a compressible turbulence the mass 
uxes appear

in several places. In the mean momentum and energy equations the mass 
ux appears in

�ve di�erent locations, Ristorcelli (1993), and modeling Ui ' Vi ignoring the contribution of

the mass 
ux has been shown to be inadequate. In the Reynolds stress equations the mass


ux determines the relative importance of the production by the mean 
ow acceleration, it

contributes to the pressure 
uxes and the viscous 
uxes. It is clear, given the number of

times it occurs in the moment evolution equations, that an accurate model for the mass 
ux

is necessary for complex compressible turbulent 
ows of aerodynamic interest. This is to

assess the magnitude of the mass 
ux in various 
ows and to include it in a computational

model when it is important. There are classes of compressible 
ows in which the contribution

from the mass 
ux are expected to be small and its inclusion in a computational model is

unnecessary.

It is expected that the mass 
ux will not make much of a contribution to usual uni-

directional shear 
ows such as the 
at plate boundary layer and diverse free shear layers,

unless there are large density gradients. The mass 
ux terms are expected to be important

in more complex 
ows: these include 
ows in which there are mean density gradients due

to large Mach number or combustion, separation or reattachment (in
ection points), cold

wall boundary conditions, mean dilatation, shocks, adverse pressure gradients, or strong

streamwise accelerations such as those occurring in ramp type 
ows.
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appearance of the mean velocity gradients in the tensor eddy-viscosity re
ects their presence

in the production terms in the evolution equation for < vi >. The model predicts coun-

tergradient transfer and shows that mean density gradients in one direction can produce a

mass 
ux in a di�erent direction. It form, valid for a general three-dimensional 
ow, is

< �vi >= � < � >< vi >= �� [�0�ij + �1�Vi;j +�2�
2Vi;k Vk;j ]fvjvpg < � >;p

where � = (Mtk=")=(1 + Mt(P=" � 1)). The viscosity coe�cients, �0; �1; �2, are known

functions of the mean velocity gradient, given in terms of the invariants of the tensor A =

1+ �rV. They are not adjustable "tuning" coe�cients.

The derivation of the expression for < vi > has involved a minimum number of assump-

tions regarding the physics of compressible turbulence. It is useful, however, to keep in mind

some of the approximations to account for possible discrepancies and to anticipate the classes

of 
ows in which the present form of the model may be inadequate. The assumptions used

are:

1) The derivation of an O (< �� >1=2 = < � >) set of evolution equations for the < vi >

showed that the unclosed terms involving correlations with the 
uctuating pressure and

stress are higher order e�ects and can therefore be neglected. In the evolution equations

there is only one unclosed term, the 
uctuating < vivk;k> covariance.

2) The form of turbulent di�usion terms appearing in the < vi > equation, are found

to scale with the density intensity, < �� >1=2 = < � >, for arbitrary inhomogeneity and

can therefore be neglected. This is consistent with the truncation of the equation as (<

�vivp >< � >�1);p= (fvivpg� < vivp >);p is an O (< �� >1=2 = < � >) quantity. The

di�erence between fvivpg and < vivp > has been seen to be small in the wall bounded 
ow

at Ma = 4:5 of Dinavahi and Pruett (1993), as seen in Ristorcelli et al. (1993).

3) The structural equilibrium assumption, D=Dt [< vi >< vj > =fvpvpg] = 0, is used

to produce an algebraic expression for the mass 
ux equation. This allows the material

derivative to be expressed in terms the production and dissipation of the turbulence energy.

For more rapidly varying 
ows in which the structural equilibrium is not expected to yield

results of adequate accuracy it is possible to carry the full di�erential equation for the mass


ux. Near solid boundaries, were the mass 
ux is most important, a structural equilibrium

is expected to be achieved rapidly and the algebraic form is adequate. It is this fact, coupled

with the density intensity truncation of the evolution equation, that enables the mass 
ux

expression to be used all the way to the wall without any ad hoc wall function corrections.

4) The algebraic truncation of the evolution equation for < vi > involves one unclosed

term,< vivk;k>. It has been assumed that it can be represented as a linear relaxation term,

< vivk;k>= � < vi > =�d where �d = Mtk=". This model for the covariance with the 
uc-

tuating dilatation is expected to be adequate for most quasi-equilibrium quasi-homogeneous
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Case 5: Arbitrary two-dimensional mean velocity gradients

For an arbitrarily complex two-dimensional 
ow, such as the developing wall bounded tur-

bulent boundary layer with separation, Vi;j = [V1;1 ; V1;2 ; 0]; [V2;1 ; V2;2 ; 0] is a suitable rep-

resentation for the velocity gradient �eld. The viscosity coe�cients are given by �0 = 1,

�1 = �(1 + �D)=IIIA, �2 = 1=IIIA where D = V1;1+V2;2. The mass 
uxes are given by

< v1 >=
�

IIIA
[(1 + �V2;2 )fv1vpg � fv2vpg�V1;2 ] < � >;p< � >�1

< v2 >=
�

IIIA
[(1 + �V1;1 )fv2vpg � fv1vpg�V2;1 ] < � >;p< � >�1

where IIIA = 1 + �D + � 2(V1;1 V2;2�V1;2 V2;1 ).
Case 6: Arbitrary three-dimensional strain with simple shear

In a general three-dimensional 
ow the expressions for the invariants are somewhat more com-

plicated. The simplest case, a simple shear with arbitrary three dilatation, is chosen. The ve-

locity gradients are represented by Vi;j = [V1;1 ; V1;2 ; 0]; [0; V2;2 ; 0]; [0; 0; V3;3 ]. The square of

the velocity gradient is given by Vi;k Vk;j = [(V1;1 )2; V1;2 (V1;1+V2;2 ); 0]; [0; (V2;2 )2; 0][0; 0; (V3;3 )2].

The invariants of A are IA = 3 + �D, IIA = 3 + 2�D + � 2(V1;1 V2;2+V2;2 V3;3+V3;3 V1;1 ),

and IIIA = (1 + �V1;1 )(1 + �V2;2 )(1 + �V3;3 ). Here, as usual, D = Vj ;j is the mean dilata-

tion. The viscosity coe�cients are a little more complicated - the three-dimensionality of the


ow now a�ects the zeroth-order viscosity coe�cient. In the two-dimensional 
ows �0 = 1;

here �0 = (1 + �D + � 2d(V1;1 V2;2+V2;2 V3;3+V3;3 V1;1 ))=IIIA. The higher order viscosity

coe�cients are given by �1 = �(1 + �D)IIIA, �2 = 1=IIIA and the 
uxes are written as

< v1 >=
�

IIIA
[(1 + � (V2;2+V3;3 ) + � 2V2;2 V3;3 )fv1vpg

�fv2vpg�V1;2 (1 + �V3;3 )] < � >;p< � >�1

< v2 >=
�

IIIA
[(1 + � (V1;1+V3;3 ) + � 2V1;1 V3;3 )fv2vpg] < � >;p< � >�1

6. Summary and Conclusions

The 
uctuating Favre velocity mean, < vi >, is the �rst-order form of a second-order

moment, the mass 
ux, < �vi >= � < � >< vi >. The mass 
uxes quantify the di�erence

between Reynolds statistics and the density-weighted Favre statistics, Ui = Vi + < vi > and

ui = vi � < vi >, and can be thought of as measuring the e�ects of compressibility due

to variations in density. The e�ects of the mean density gradients on the anisotropy of the

turbulence are fully parameterized by the mass 
ux.

An algebraic representation for the mass 
ux has been derived from the transport equa-

tion for the Favre 
uctuation mean using the structural equilibrium assumption. The mass


ux is found to be proportional to the mean density gradients with an anisotropic eddy-

viscosity that depends on both the Reynolds stresses and the mean velocity gradients. The
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isotropic eddy-viscosity model cannot predict; such a model predicts a zero streamwise mass


ux.

The predictions of the cross-stream component, < v2 >, are less successful. This is be-

cause there are no large production terms in the < v2 > expression to mask the inaccuracies

of the linear relaxation model assumed for the dilatational correlation in a nonequilibrium

"newly formed" turbulence. The present temporal DNS is started from a laminar pro�le

and computed through transition. The data shown in the �gures represents a 
ow approxi-

mately three eddy-turnovers past the transition, "�x=(kU) ' 3. The turbulence �eld is not

fully developed, retaining vestiges of the initial conditions; a linear relaxation model for the

correlation with the 
uctuating divergence would not be expected to do well in such, a more

or less, transitional 
ow.

The poor agreement in the expression for the cross-stream mass 
ux cannot be explained

by the fact that the data comes from a temporal DNS. The expression for the mass 
ux model

is from its evolution equation which is independent of the mean 
ow equation calculation.

Thus, the problem often seen in comparing Reynolds stress model calculations to temporal

DNS simulations, in which there is a forcing term in the equations to compensate for the

boundary layer growth, do not appear here.

Case 4: Plane strain with mean dilatation

For a plane strain with arbitrary non-zero dilatation, Vi;j = V1;1 �i1�j1+V2;2 �i2�j2, and the vis-

cosity coe�cients take on the following simple values �0 = 1, �1 = �(1+� (V1;1+V2;2 ))=IIIA,
�2 = 1=IIIA where IIIA = (1 + �V1;1 )(1 + �V2;2 ). The 
uxes are given by the simple ex-

pressions
< v1 >=

�
(1+�V1;1)

fv1vpg < � >;p< � >�1

< v2 >=
�

(1+�V2;2)
fv2vpg < � >;p< � >�1 :

Clearly the model is fully realizable and the destabilization of more rudimentary models,

noted by Zeman and Coleman (1991), for a 
ow with large normal strain is not an issue.

Note that in very high strains, say the normal passage through a shock, the dependence on

the phenomenological parameter �d, absorbed in � is lost. Here, again, � = (Mtk=")=(1 +

Mt(P="� 1)).

In mean mean �eld with a large dilatational component, it is more useful to consider a

mean velocity gradient described of the form Vi;j = V1;1 ((1+D)�i1�j1��i2�j2). The viscosity

coe�cients take on the following values �0 = 1, �1 = �1(1 +D�V1;1 )=IIIA, �2 = 1=IIIA.

The streamwise and cross-stream components of the Favre 
uctuation mean, in a 
ow with

arbitrary density gradient, become

< v1 >=
�

1+(1+D)�V1;1
fv1vpg < � >;p< � >�1

< v2 >=
�

1��V1;1
fv2vpg < � >;p< � >�1
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in which the eigenvalue of the Reynolds stress vanishes will also vanish. It is interesting to

compare the expression for the mass 
ux to Zeman's (1993). In an equilibrium turbulence,

for which P = ", and in the limit of small velocity gradients the present model simpli�es, to

within a constant of proportionality, to Zeman's model. Comparisons of this model with the

DNS data in a wall bounded compressible 
ow shows that it does not successfully capture the

results known from DNS. The neglected terms involving the velocity gradients are essential.

After all the terms with the mean velocity gradients represent the production terms, which

are typically not negligible, in the mass 
ux equation. Computations with the neglected

velocity gradient capture the near wall behavior very nicely, as will be seen in the next case.

Case 3: Simple shear, Vi;j = V1;2 �i1�j2

In problems of engineering interest the turbulence will be anisotropic and there will be

nonnegligible gradients in the mean velocity �eld and the production terms for the mass 
ux

need to be included in the algebraic expression. For the simple shear, Vi;j = V1;2 �i1�j2, a

surprisingly simple expression for the mass 
ux is possible. The computation is easily carried

out by hand using < vp > (�ip + �Vi;p ) = �fvivpg < � >;p< � >�1. Using the inversion

formula the invariants of A are IA = 3; IIA = 3; IIIA = 1 and the viscosity coe�cients

take on the simple values �0 = 1; �1 = �1; �2 = 1 and, as the square of the mean velocity

gradient is zero, the expression for the mass 
ux becomes

< vi >= � [�ij � �V1;2 �i1�j2]fvjvpg < � >;p< � >�1

The streamwise and cross-stream components of the Favre 
uctuation mean, in a 
ow with

only a cross-stream density gradient, become

< v1 >= � [fv1v2g � �V1;2 fv2v2g] < � >;2< � >�1

< v2 >= �fv2v2g < � >;2< � >�1 :

Note that the e�ects of the production of < vi > by the mean shear, proportional to V1;2,

are included in the expressions for the streamwise mass 
ux. This is similar to the normal

Reynolds stresses in a unidirectional shear: the production mechanism is in the equations

of the streamwise component of the energy and therefore it is larger than the spanwise and

cross-stream components of the turbulence energy. Computations, shown in Figure 3, with

this model are very successful for the streamwise component < v1 >. The peak in < v1 > is

captured surprisingly well in size and location. This behavior can not be captured without the

inclusion of the V1;2 fv2v2g term. The small velocity gradient limit expression, case 2 above,

which is essentially the algebraic form both Zeman and Cole (1991) and Rubesin (1990)

substantially underpredicts the near-wall peak of the mass 
ux. Note that a streamwise

mass 
ux is engendered by a cross-stream density gradient. This is a behavior that an

12



Case 1: Isotropic turbulence with small velocity gradients, �rV << 1

In this case �rV << 1, P = 0 and the time scale � = (Mtk=")=(1 +Mt(P=" � 1)). The

eddy-viscosity tensor assumes the form �fvjvpg �Mt(k=")2k�jp=(1 �Mt) and the model is

< vi >� Mt

1�Mt
(k=")2k < � >;i< � >�1 :

This can be compared to the usual eddy-viscosity model: < vi >= (�T= < � >2 Prt �) <

� >;j in which �T = C�f� < � > k2=� and thus

< vi >� (k=")k < � >;i< � >�1 :

The usual eddy-viscosity form misses the dependence on Mt which is necessary if the

< vi > are to vanish in the absence of compressibility e�ects. Thus, apart from the Mt

scaling, a scalar viscosity assumption will work, in the limit of an isotropic turbulence with

negligible mean velocity gradients. Note that this form in a boundary layer 
ow with cross-

stream density gradient cannot predict a streamwise mass 
ux. It can only predict a mass 
ux

down the density gradient. In problems of engineering interest there will be countergradient

transport, as has been seen in the Ma = 4:5 data of Dinavahi et al. (1993), and an eddy-

viscosity gradient transport hypothesis is inappropriate. These inadequacies have also been

noted by Taulbee and VanOsdol (1991).

The major shortcoming of the eddy-viscosity assumption is realizability and its impact on

computability in compressible closures. In the Reynolds stress equations for arbitrary mean


ow accelerations, a gradient transport assumption for < vi > can cause the acceleration pro-

duction mechanism to destabilize the computations. For example if fv�v�g, in the Reynolds

stress equations above, vanishes, < v� > must also vanish in order to keep that eigenvalue

of the Reynolds stress from going negative, as a �nite < vi > in < vi >< � > D=Dt Vj

will cause negative energies for arbitrary mean acceleration. This cannot be accomplished

with the eddy-viscosity form of the model. Gatski (1993) has used a scalar eddy-viscosity

representation and found it to be computationally destabilizing. Zeman and Coleman (1991)

have also pointed out that inadequate representations of the mass 
ux can destabilize com-

putations in 
ows when the acceleration terms is important. This occurs, for example, in

the passage through a shock or in 
ows in which the mean strain or mean dilatation are

important.

Case 2: Anisotropic turbulence with small mean velocity gradients, �rV << 1

In the case �rV << 1 and when the turbulence is anisotropic the expression for the mass


ux becomes

< vi >= �fvivpg < � >;p< � >�1

where � = (Mtk=")=(1+Mt(P="�1)). Note that this expression for the mass 
ux allows for

countergradient transfer and is realizable: the mass 
ux in the direction of the principal axis

11



signi�cant features: 1) the mass 
ux in one direction, as might be expected from continuity

considerations, is in
uenced by the mass 
ux in another direction and 2) the contraction of

the density gradient on the Reynolds stress allows countergradient transfer. In simple cases

this set of equations is easily solved by hand. Performing the general inversion the model

can be written in symbolic form as

< vi >= �Tijfvjvpg < � >;p< � >�1

where Tij = (�ij + �Vi;j )�1. This is an anisotropic eddy-viscosity model in which the eddy-

viscosity tensor �jp = T jifvivpg is a function of the Reynolds stresses and the mean 
ow

gradients. Though this form suggests the structure of the model it is not in a form most

suitable for computation. Recourse to the Cayley-Hamilton theorem allows Tij to be written
in terms of the invariants and the �rst and second powers of the matrix:

IIIAA
�1 = A2 � IAA+ IIA1

Substituting A = 1+ �rV produces an expression for the inverse

IIIA(1+ �rV)�1 = (1 � IA + IIA)1+ (2 � IA)�rV + � 2(rV)2

and the �nal model can be written, in ascending powers of ratios of time scales, as

< vi >= � [�0�ij + �1�Vi;j +�2�
2Vi;k Vk;j ]fvjvpg < � >;p< � >�1 :

The nondimensional "viscosity" coe�cients, �0; �1; �2 are known in terms of the mean

deformation; they are not phenomenological parameters that require calibration to experi-

ments which then limit the application of the model to 
ows not too di�erent from that for

which the model has been calibrated. Only one phenomenological assumption - to obtain

the relaxation model for the correlation with the 
uctuating dilatation - has been made. The

invariants and the viscosity coe�cients are given in the Appendix that summarizes the �nal

form of the model.

5. Discussion and implementation of the mass 
ux model in simple 
ows

Formidable as the algebraic expression for the mass 
ux may appears there are some

simple expressions for the < vi > possible. Though the representation is valid for arbitrary

three-dimensional 
ows several cases with two-dimensional mean �elds are investigated in

order to understand the e�ects of di�erent mean deformations. One three dimensional �eld

is considered in order to anticipate the e�ects the three-dimensionality of the 
ow might

have on the mass 
ux expressions.
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form of the evolution equation for Favre 
uctuation mean is now:

< vi > (P � ")=k = � < vp > Vi;p+fvivpg < � >;p< � >�1 + < vivp;p> :

The body force terms and the Coriolis terms have not been carried, however the analysis

can be carried quite easily with them as they do not constitute unknown terms that require

closure.

It remains to close the last term on the right hand side. It is possible, in situations

with large density and velocity gradients, to neglect the correlation with the 
uctuating

divergence. This is equivalent to the assumption that the mean 
ow gradients of density and

velocity are large and set the balance to lowest order. It can, however, be shown that the

correlation with the 
uctuating divergence scales with mean 
ow gradients and is therefore

not negligible in a general 
ow. Moreover there are times when the di�erence between the

mean production terms is small which means that the contribution from < vivp;p> will be

important.

The correlation with the divergence will be represented by a linear relaxation model.

This linear relaxation model is chosen on the grounds that < vivp;p> and < vi > have the

same tensorial properties. Both belong to the same symmetry groups, satisfying the same

re
ectional and rotational properties, vanishing in isotropic turbulence and in an equilibrium

homogeneous turbulence. From a computational point of view, a linear relaxation form is

desirable as it avoids the possibility of a singularity in the inversion of the velocity gradient

during a computation and is consistent with realizability. A linear relaxation with time scale

�d

< vivp;p>= � < vi > =�d

is chosen. Zeman and Coleman (1991) have also used a linear relaxation with acoustic time

scale for this correlation. The time scale, �d, in the model for < vivp;p>= � < vi > =�d may

be thought of as a dilatational time scale. The time scale, �d, is the only phenomenological

parameter assumed to obtained the present model for the mass 
ux. Computations using

the acoustic time scale, �d = Mtk=", to represent the dilatational time scale have been

successful. The present model will use this approximation for the dilatational time scale.

There are other possibilities though at this time, given the success of the present model,

there is little motivation for further investigation.

Substituting for the unknown correlation with the 
uctuating divergence in the algebraic

truncation of the evolution equation for < vi > produces

< vp > (�ip + �Vi;p ) = �fvivpg < � >;p< � >�1 :

where � = (Mtk=")=(1 + Mt(P=" � 1)) The model is now a set of three coupled linear

algebraic equations of the form Aip < vp >= bi. Inspection of the equations reveals two

9



an evolution equation independent of complicating correlations with the pressure and viscous

surface forces. Note that the fact that fvivjg� < vivj >=< �vivj >< � >�1 and that <

��vivp >=< � > fvivpg has been used. The inhomogeneous di�usion term [fvivjg� < vivj >]

is an O (
p
�) term, as can be seen by the data presented in Dinavahi et al. (1993), and can

in general be neglected. In a homogeneous turbulence it is zero, of course.

This very simple equation for < vi > results from the fact that, in the Favre setting,

surface forces are carried using the Reynolds decomposition while volume forces appear

naturally in the Favre variables. The �rst-moment of the 
uctuating surface forces (pressure,

viscosity) appearing in the equation for < vi > are zero and no complicating models for these

terms are required. This combined with the peculiarity of the 
uctuating Favre mean allows

< �vi >= � < � >< vi > and leads one to work with the �rst-moment form < vi > of the

second-moment < �vi >. Thus a simple evolution equation for the mass 
ux that highlights

the zeroeth order e�ects associated with the volumetric compressibility while relegating the

higher order e�ects of the surface forces to a higher order equation in the expansion is

obtained.

4. An algebraic expression for the Favre-velocity perturbation

To obtain the mass 
ux, < �vi >= � < � >< vi >, an equation for the Favre 
uctuation

mean, < vi >, with only one unknown term, the correlation with the 
uctuating divergence

< vivp;p>, has been derived. The evolution equation obtained for the Favre 
uctuation

mean is simple enough to carry in turbulence simulations. However it is still simpler and

less expensive to carry an algebraic expression. This is now derived.

A direct algebraic truncation of the evolution equation will describe the �xed points of the

< vi >. An algebraic truncation following the procedure used in algebraic stress models will

give the �xed points of < vi > =fvpvpg1=2. This is done by assuming a structural equilibrium

of the form D=Dt [< vi > =fvpvpg1=2] = 0 allowing the convective derivatives, D=Dt < vi >

to be expressed in terms of the right hand side of the evolution equation for the turbulence

energy:
D

Dt
< vi >=

< vi >

fvpvpg
D

Dt
fvqvqg =< vi > (P � ")=k

which allows the evolution of the < vi > to re
ect the changes in the energy of the local

turbulence �eld. Here P, ", are the production and the dissipation in the turbulent kinetic

energy equation where k = 1=2fvpvpg is the speci�c kinetic energy.
In the near wall region, where the mass 
ux is expected to be the most important, the


ow will attain a structural equilibrium rapidly and such an approximation will be adequate.

Note that the equality P = " corresponds to the �xed point D=Dt < vi >= 0. The algebraic
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neglecting < vi > as Ui = Vi + < vi >. It is clear that this approximation is only valid

when < vi > and its gradients are negligible. The data of Dinavahi et al. (1993b) indicates

that this approximation is a poor one in the wall bounded 
ow. In fact, in some portions

of the turbulent boundary layer, the mass 
uxes' contribution to the viscous terms is as

high as 25%. Figure 2, taken from Ristorcelli et al. (1993), shows the second cross-stream

derivatives of the Ui; Vi and < vi >. The mass 
ux terms also contribute to the pressure

and viscous work terms in the mean energy equation.

It is clear, given the number of times it occurs in the moment evolution equations, that an

expression for the mass 
ux for general compressible turbulent 
ows of aerodynamic interest.

is necessary. An evolution equation and a model for < vi > are important: 1) to be able to

estimate the importance of < vi > in di�erent 
ows, 2) to know what to do about it when

it is important, and 3) to be able to relate experimental values to computational results.

3. An evolution equation for the Favre velocity perturbation

Consider the evolution equations for the total velocity and density �elds:

��;t + (��u�p);p = 0

(��u�i );t + (��u�pu
�

i );p+2�ikp
k�
�u�p = �p�i + ��f�i + ��

ij;j

where ��

ij = ��[u�i ;j +u
�

j ;i�2=3u�q;q �ij]. To a very good approximation the viscosity is in-

dependent of density: it will be taken to be equal to its local mean value and correlations

between the viscosity and velocity will be considered as higher order e�ects and neglected.

The evolution equation for the 
uctuations around the Favre-mean momentum are obtained

by subtracting the evolution equation for the mean momentum < � > Vi from the equation

for ��u�i to obtain an equation for ��vi. As < ��vi >= 0, a straightforward time-average of

this equation does not produce any results. The equation is rewritten in its nonconservative

instantaneous form:

��vi;t+ ��(Vp + vp)vi;p+(��vpVi);p� < ��vivp >;p+2�ikp
k�
�vp =

�pi + ��fi + �uij;j � �LvfVi + Vi(��vp);p

where �uij =< � > [ui;j +uj;i�2=3uq;q �ij] and LvfVi = Vi;t+VpVi;p+2�ikp
kVp � Fi. The

term �LvfVi re
ects the coupling between the 
uctuating density and the mean 
ow. Divid-

ing by the total density, ��, expanding using the binomial theorem, and averaging pro-

duces an evolution equation for < vi > in which successive terms scale as
p
�, where

� =< �2 > = < � >2 is the normalized density variance.

Keeping only lowest order terms produces

< vi >;t+Vp < vi >;p+2�ikp
k < vp >= � < vp > Vi;p+ fvivpg < � >;p< � >�1 + < vivp;p>

+ [fvpvig� < vpvi >];p� < fi > + O (
p
�)
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The second moment equations for a compressible 
ow are written, without approximation

and after some manipulation, as

D=Dt (< � > fvivjg) = � < � > fvivpgVj ;p� < � > fvjvpgVi;p+
Q

ij +2=3 < pvk;k> �ij
�[< pvi > �pj+ < pvj > �ip+ < � > fvivjvpg� < vj�

u
ip > � < vi�

u
jp >];p

+ < vj > [�P;i+ �ik;k+ < �ik >;k ]+ < vi > [�P;j + �jk;k+ < �jk >;k ]
� < uj;p �

u
ip > � < ui;p �

u
jp >

where the meanmomentumequations have been used and �ij =< � > [vi;j +vj;i�2=3vq;q �ij],
�ij =< � > [Vi;j +Vj;i�2=3Vq ;q �ij] and �uij =< � > [ui;j +uj;i�2=3uq;q �ij]. The form of

the equations above re
ects the following manipulations: 1) The deviatoric part of the

pressure-strain correlation is de�ned as
Q

ij =< p(vi;j +vj;i ) > �2=3 < pvk;k > �ij and 2)

the identity vi = ui + < vi > has been used to rewrite the transport terms in vi vari-

ables while keeping the dissipation terms in ui variables. In the equations for the Favre-

averaged Reynolds stress the terms arising from surface forces appear naturally in (Ui; ui)

variables while the problem is posed in (Vi; vi) variables. In recasting the Reynolds variables

terms in Favre variables the mass 
ux, < vi >, makes several di�erent contributions to

the Reynolds stress equations and, of course, to the k = 1=2fvjvjg equation. It multiplies

the mean 
ow acceleration which is a new turbulence production mechanism important in


ows with strong mean pressure gradients, shocks and expansion fans, and in any 
ows

that have strong streamwise accelerations. The mass 
ux also contributes to the viscous

di�usion of the Reynolds stresses a term that is important in the near wall region which is

also where the mass 
ux terms are important. Note that �uij = �ij� < �ij > allows the

viscous transport terms to be recast in the Favre variables and that mass 
ux terms and

their derivatives will appear. The mass 
ux also contributes to the Reynolds stress equations

through the pressure 
ux to which it is coupled by the equation of state: for an ideal gas

< pvj >= P [< �vj >< � >�1 + f�vjg T�1]. In the adiabatic case the pressure 
ux can

be written, to �rst order, as < pvj >= P
 < �vj >< � >�1= c2 < �vj >. Results from

some numerical simulations have shown that the pressure and density 
uctuations of the

turbulence passing through a weak shock can be related through such a rule, Lee (1992).

This is not found to be true for the wall bounded 
ow of Dinavahi and Pruett (1993) as

shown in Dinavahi et al. (1993). Lee has also found that the pressure 
ux (as well as

the pressure-dilatation) is primarily responsible for the rapid evolution of turbulent kinetic

energy downstream of a weak shock.

In the mean momentumand mean energy equations the viscous terms appear in Reynolds

variables, �ij(U) =< � > [Ui;j +Uj;i�2=3Uq;q �ij]. When the problem is recast in Favre

variables, the viscous terms become functions of the Favre mean velocity and the Favre


uctuation mean. It is typical to approximate Ui ' Vi to close the equation. This involves
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on the turbulence. An anisotropy tensor based on the Reynolds variables is de�ned as

brij =< uiuj > = < upup > � 1=3�ij . A similar anisotropy tensor using the Favre variables

can also be de�ned: bfij =< vivj > = < vpvp > � 1=3�ij . An energy weighted deviation of the

anisotropy tensor from its density-weighted equivalent is given solely in terms of the Favre


uctuation mean:

< vpvp > b
f
ij� < upup > brij =< vi >< vj > �1=3 < vq >< vq > �ij:

Note that there are only three independent quantities < vi >. >From a heuristic point of

view this is pleasantly consistent: the e�ect of mean 
ow gradients, Vi;j, is parameterized by

the six components of the anisotropy tensor while the e�ect of the mean density gradients,

the vector < � >;i, is parameterized by the three components of the mass 
ux.

There are some interesting properties of the mass 
ux that can be surmised from the

above relationships. The most striking, and this is a rigorous result, is that in 1) an isotropic

turbulence and or in 2) a statistically stationary homogeneous turbulence with mean velocity

gradients and with no mean density gradients, < vi >� 0 and the Reynolds and Favre

variables are equivalent:
Ui = Vi
ui = vi

< vivj >= < uiuj >

b
f
ij = brij:

Similar results hold for relationships between the various moments of ui and vi as can be

easily derived. These results come from the following two facts: 1) in an isotropic �eld all

vector statistics are zero; 2) in a statistically stationary homogeneous �eld, whose directional

characteristics are solely determined by the mean velocity gradients, which are invariant to

coordinate re
ection, all quantities not invariant to coordinate re
ection are zero. This

has been recognized, in the context of compressible turbulence, by Blaisdell (1991). In

short, in isotropic or homogeneous turbulence without mean density gradients, there is no

di�erence between the problem posed in Reynolds or Favre variables. This is an important

and serious issue a�ecting the validity of conclusions about the performance of compressible

turbulence models which have been developed and tested in homogeneous or isotropic 
ows.

On the other hand it suggests the appropriateness of the incompressible turbulence modeling

framework in building models for the compressible 
ow as they are consistent in the isotropic

and homogeneous limit, for arbitrary turbulent Mach number.
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decompositions of the velocity �eld. They are related by

Ui = Vi + < vi >

ui = vi � < vi > :

The 
uctuating Favre mean quanti�es the di�erence between the Favre-mean and the Reynolds-

mean velocities, Vi and Ui, as well as the di�erence between the instantaneous 
uctuating

portions of these two �elds. Note that because of the de�nition of the Favre-average of the

Favre-deviation, < ��vi >�< � > fvig = 0,

� < � >< vi >=< �vi >;

the time average of the 
uctuating Favre velocity and the mass 
ux are equivalent quantities

(apart from a scaling by the local mean density). Because of the peculiarities of the density-

weighted averaging operation, a second-order statistic, < �vi >, can be expressed as the

product of two �rst-order statistics, � < � >< vi >. The two phrases mass 
ux and Favre


uctuation mean will be used interchangeably. The primes on the 
uctuating density have

been dropped.

As Ui = Vi + < vi >, the < vi > quantify the di�erence between the unweighted or

Reynolds mean, Ui, and the density-weighted mean, Vi, and represent the e�ects of compress-

ibility through variations in density. Data from Ma = 4:5 DNS computations of Dinavahi

and Pruett (1993) in unidirectional developing wall bounded 
ow indicate that the approx-

imation of Ui ' Vi in the wall region is inadequate. In this 
ow, in which Mt ' 0:3 and

there is a four-fold variation of the mean density over the boundary layer. In data taken

from that simulation, shown in Figure 1, it was unexpectedly found that < v2 > is larger

than either U2 and V2. It is large enough to cause U2 and V2 to have di�erent signs. This

is an indication that the net 
uid particle transport and the net momentum transport are

in opposite directions. The point is that this is a nominally simple 
ow, in comparison to

those of practical interest, no in
ection points, no change of geometry, no substantial heat

transfer, no cold wall boundary conditions with the concomitant change in sign of the mean

density gradient, in which the approximation U2 ' V2 was expected to be adequate and they

are not even of the same sign.

In comparing experimental data and computational results the mass 
ux plays a role in

relating the Reynolds stresses in Favre, vi, variables and Reynolds, ui, variables:

< vivj >= < uiuj > + < vi >< vj > :

The moments involving ui are experimentally measured while those involving vi come from

the calculations. As it is a vector it describes the anisotropic e�ects compressibility has
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no unknown correlations with viscous and pressure terms appear. The evolution equation is

simple enough to carry as an additional di�erential equation in turbulence simulations, as

Zeman and Cole (1991) have proposed. Nonetheless an algebraic truncation of the equation

is derived as a further simpli�cation of the problem applicable to most compressible 
ows of

engineering interest. The algebraic truncation, similar to that used in algebraic stress models,

assumes a structural equilibrium which relates the material derivative in the 
uctuating

Favre mean equation to the production and dissipation in the kinetic energy equation. The

truncation produces a set of three coupled algebraic equations, of the form Aij < vj >= bi.

Application of the Cayley-Hamilton theorem produces an explicit closed form expression

for the < vi >. The < vi > are found to be proportional to the density gradients with

an eddy-viscosity tensor dependent on the Reynolds stress and the mean deformation. The


uctuating Favre mean is then related back to mass 
ux using the well known relation

between the two quantities.

This article is organized in the following manner. After motivating the investigation in

section two, section three describes the derivation of an evolution equation for the mass


ux. In the following section an algebraic model for the mass 
ux is obtained. The general

expression for the < vi > is then specialized to several simple mean 
ows in order to highlight

the physics. It is found that, in the limit of isotropic turbulence with negligible mean velocity

gradients, the derived expression reduces to the usual scalar eddy-viscosity form derived using

a gradient transfer assumption. The model is tested in the Ma = 4:5 wall bounded DNS of

Dinavahi and Pruett (1992).

2. Preliminary exposition

In general, upper case letters will be used to denote mean quantities except in the case of

the mean density, < � >, since � which has no convenient upper case form. The averaging

operation is indicated using the angle brackets for time means, < vivj >, and the curly

brackets for the density-weighted or Favre mean, fvivjg, where < � > fvivjg =< ��vivj >

and the asterisk denotes the full �eld, �� =< � > + �0. The dependent variables are

decomposed according to

u�i = Ui + ui where < ui >= 0
u�i = Vi + vi where fvig = 0
�� = < � > + �0 where < �0 >= 0
p� = P + p where < p >= 0
T � = T + � where f�g = 0

As both the Reynolds and the Favre velocities appear naturally in the evolution equations

for a compressible turbulence it is necessary to carry both the Favre and the Reynolds
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Others have recognized the importance of the mass 
ux and several models have been

proposed. Taulbee and VanOsdol (1991) have derived a modeled equation for the mass


ux. In their equation they keep the correlations with the surface forces which are modeled

assuming a homogeneous turbulence and the validity of Morkovin's hypothesis. In the present

asymptotic derivation these terms scale with the density intensity and are found to be of

higher order; the present asymptotic derivation of the transport equation for the mass 
ux

keeps only the zeroeth terms to keep the model simple and to avoid the loss of accuracy

associated with the individual approximations made in many models. They also use a

gradient transfer assumption for the turbulent di�usion. Due to the di�erent manipulation

to obtain an equation for the the Favre 
uctuation equation, the turbulent di�usion is found

to be proportional to the di�erence between the Favre and Reynolds averaged Reynolds

stresses; as this is a higher order term, scaling as the density intensity, there is no need to

model it. The Taulbee and VanOsdol model requires the solution of two modeled di�erential

equations, one for the mass 
ux and one for the density variance which appears as a source

term in their modeled mass 
ux equation. In the present derivation of the evolution equation

for the mass 
ux only one unknown, the covariance with the 
uctuating dilatation, requires

modeling. There is no need for a separate equation for the density variance.

Zeman and Coleman (1991) have also proposed a mass 
ux model. Their modeled equa-

tion, which has been tested in the turbulence through a shock simulations of Lee (1992) is

very similar to the one derived in this article. They also propose an algebraic expression for

the mass 
ux to which the present model simpli�es to, in the limit of negligible mean defor-

mation. Our work has shown that the inclusion of the mean velocity gradients is essential

to capturing the near wall maxima of the mass 
ux. After all, the mean velocity gradients

are a major portion of the production terms of the mass 
ux in its transport equation.

Rubesin (1990) has also proposed a mass 
ux model. It assumes that 1) the 
uctuations

obey a polytropic gas law 2) the speci�c heats are constant allowing the 
uctuating density

to be written in terms of the 
uctuating enthalpy and that 3) the 
uctuating enthalpy can

be related to the mean enthalpy using a gradient transfer hypothesis. The Rubesin model

requires the polytropic index as an input. Dinavahi et al. (1993) and Ristorcelli et al. (1993)

in a temporal DNS have shown that the polytropic index varies substantially over the width

of the turbulent boundary layer. The Rubesin model also predicts a mass 
ux only when

there is a heat 
ux, while the present model derived from the exact evolution equation,

predicts a mass 
ux whenever there are mean density gradients.

The present model for the mass 
ux starts with the exact evolution equation for the mass


ux. An equation for the 
uctuating Favre mean is then developed in a power series in the


uctuating density intensity. To zeroeth order there is only one unknown correlation and
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1. Introduction

This article presents a derivation of a representation for the non-zero �rst-moment of

the 
uctuating velocity �eld, the time average of the 
uctuating component of the Favre

velocity, < vi >. Mathematically < vi > represents the di�erence between unweighted and

density weighted averages of the velocity �eld and is therefore a measure of the e�ects of

compressibility through variations in density. It plays an important role in parameterizing

the anisotropic e�ects of compressibility associated with the mean dilatation and gradients in

the mean velocity and density. Experimentally it is an important quantity that allows Favre-

averaged numerical results to be related to time-averaged experimental results. The need to

consider this quantity is motivated by its frequent contributions to the �rst and second-order

moment equations in two-equation k�" type turbulence closures as well as in Reynolds stress
closures. In the meanmomentumequations the mass 
ux makes a contribution to the viscous

terms. In the mean energy equations the mass 
ux makes a contribution to the viscous, the

pressure work, and the pressure 
ux terms. In the Reynolds stress equations the viscous

terms appear naturally in Reynolds variables while the problem is posed in Favre variables.

In the process of splitting the viscous terms into the viscous transport terms, carried in Favre

variables, and the dissipation terms, carried in Reynolds variables, important contributions

from the mass 
ux appear. The accurate accounting of these terms is important for any

consistent near wall modeling and the retention of the mass 
ux terms is important in

complex compressible turbulent 
ows. These contributions have been investigated in detail

in Ristorcelli (1993). The mass 
ux also determines the importance of two production

mechanisms one due to the acceleration of the mean 
ow and the other due to viscous e�ects

associated with the Favre 
uctuation mean.

Many of these contributions are neglected in turbulence closure models. This is a result of

assuming that the Favre mean velocities are suitable approximations to the Reynolds mean

velocities. This approximation is not appropriate in complex 
ows of practical interest. The

retention of the mass 
ux terms will be necessary in complex compressible turbulent 
ows:

these include 
ows in which there are mean density gradients due to large Mach number,

combustion, separation or reattachment (in
ection points), cold wall boundary conditions,

mean dilatation, shocks, adverse pressure gradients, or strong streamwise accelerations. Even

in this nominally simple compressible 
ow, such as a supersonic wall bounded boundary layer

which has a four-fold variation of the mean density over the width of the boundary layer, the

mass 
ux is not negligible. Dinavahi et al. (1993b), in a Mach 4.5 wall bounded DNS, has

found that the cross-stream Favre mean and Reynolds mean velocities have di�erent signs

attesting to the fact that the mass 
ux is not small with respect to the mean velocities.
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A REPRESENTATION FOR THE TURBULENT MASS FLUX

CONTRIBUTION TO REYNOLDS-STRESS AND TWO-EQUATION

CLOSURES FOR COMPRESSIBLE TURBULENCE

J.R. Ristorcelli1
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ABSTRACT

The turbulent mass 
ux, or equivalently the 
uctuating Favre velocity mean, appears in

the �rst and second moment equations of compressible k � " and Reynolds stress closures.

Mathematically it is the di�erence between the unweighted and density-weighted averages of

the velocity �eld and is therefore a measure of the e�ects of compressibility through variations

in density. It appears to be fundamental to an inhomogeneous compressible turbulence,

in which it characterizes the e�ects of the mean density gradients, in the same way the

anisotropy tensor characterizes the e�ects of the mean velocity gradients. An evolution

equation for the turbulent mass 
ux is derived. A truncation of this equation produces an

algebraic expression for the mass 
ux. The mass 
ux is found to be proportional to the mean

density gradients with a tensor eddy-viscosity that depends on both the mean deformation

and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with

notable results.
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